Multi-criterion optimization for genetic network modeling
نویسندگان
چکیده
A major problem associated with the reverse engineering of genetic networks from micro-array data is how to reliably 5nd genetic interactions when faced with a relatively small number of arrays compared to the number of genes. To cope with this dimensionality problem, it is imperative to employ additional (biological) knowledge about real genetic networks, such as limited connectivity, redundancy, stability and robustness, to sensibly constrain the modeling process. In previous work (Proceedings of the 2001 IEEE—EURASIP Workshop on Nonlinear Signal and Image Processing, Baltimore, MA, June 2001; Proceedings of the Second International Conference on Systems Biology, Pasadena, CA, November 2, pp. 222– 230), we have shown that by applying single constraints, the inference of genetic interactions under realistic conditions can be signi5cantly improved. Recently (Proceedings of the SPIE, San Jose, CA, January 2002), we have made a preliminary study on how these approaches based on single constraints solve the underlying bi-criterion optimization problem. In this paper, we study the problem of how multiple constraints can be combined by formulating genetic network modeling as a multi-criterion optimization problem. Results are shown on arti5cial as well as on a real data example. ? 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Modeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...
متن کاملModeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملOptimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملArtificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine
In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 83 شماره
صفحات -
تاریخ انتشار 2003